Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Neural Regen Res ; 19(9): 2057-2067, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38227536

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202409000-00039/figure1/v/2024-01-16T170235Z/r/image-tiff Parkinsonism by unilateral, intranigral ß-sitosterol ß-D-glucoside administration in rats is distinguished in that the α-synuclein insult begins unilaterally but spreads bilaterally and increases in severity over time, thus replicating several clinical features of Parkinson's disease, a typical α-synucleinopathy. As Nurr1 represses α-synuclein, we evaluated whether unilateral transfected of rNurr1-V5 transgene via neurotensin-polyplex to the substantia nigra on day 30 after unilateral ß-sitosterol ß-D-glucoside lesion could affect bilateral neuropathology and sensorimotor deficits on day 30 post-transfection. This study found that rNurr1-V5 expression but not that of the green fluorescent protein (the negative control) reduced ß-sitosterol ß-D-glucoside-induced neuropathology. Accordingly, a bilateral increase in tyrosine hydroxylase-positive cells and arborization occurred in the substantia nigra and increased tyrosine hydroxylase-positive ramifications in the striatum. In addition, tyrosine hydroxylase-positive cells displayed less senescence marker ß-galactosidase and more neuron-cytoskeleton marker ßIII-tubulin and brain-derived neurotrophic factor. A significant decrease in activated microglia (positive to ionized calcium-binding adaptor molecule 1) and neurotoxic astrocytes (positive to glial fibrillary acidic protein and complement component 3) and increased neurotrophic astrocytes (positive to glial fibrillary acidic protein and S100 calcium-binding protein A10) also occurred in the substantia nigra. These effects followed the bilateral reduction in α-synuclein aggregates in the nigrostriatal system, improving sensorimotor behavior. Our results show that unilateral rNurr1-V5 transgene expression in nigral dopaminergic neurons mitigates bilateral neurodegeneration (senescence and loss of neuron-cytoskeleton and tyrosine hydroxylase-positive cells), neuroinflammation (activated microglia, neurotoxic astrocytes), α-synuclein aggregation, and sensorimotor deficits. Increased neurotrophic astrocytes and brain-derived neurotrophic factor can mediate the rNurr1-V5 effect, supporting its potential clinical use in the treatment of Parkinson's disease.

2.
Nat Commun ; 14(1): 5610, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37699936

ABSTRACT

Dynamic interactions of neurons and glia in the ventral midbrain mediate reward and addiction behavior. We studied gene expression in 212,713 ventral midbrain single nuclei from 95 individuals with history of opioid misuse, and individuals without drug exposure. Chronic exposure to opioids was not associated with change in proportions of glial and neuronal subtypes, however glial transcriptomes were broadly altered, involving 9.5 - 6.2% of expressed genes within microglia, oligodendrocytes, and astrocytes. Genes associated with activation of the immune response including interferon, NFkB signaling, and cell motility pathways were upregulated, contrasting with down-regulated expression of synaptic signaling and plasticity genes in ventral midbrain non-dopaminergic neurons. Ventral midbrain transcriptomic reprogramming in the context of chronic opioid exposure included 325 genes that previous genome-wide studies had linked to risk of substance use traits in the broader population, thereby pointing to heritable risk architectures in the genomic organization of the brain's reward circuitry.


Subject(s)
Opioid-Related Disorders , Transcriptome , Humans , Gene Expression Profiling , Opioid-Related Disorders/genetics , Analgesics, Opioid , Mesencephalon
3.
bioRxiv ; 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36945611

ABSTRACT

Dynamic interactions of neurons and glia in the ventral midbrain (VM) mediate reward and addiction behavior. We studied gene expression in 212,713 VM single nuclei from 95 human opioid overdose cases and drug-free controls. Chronic exposure to opioids left numerical proportions of VM glial and neuronal subtypes unaltered, while broadly affecting glial transcriptomes, involving 9.5 - 6.2% of expressed genes within microglia, oligodendrocytes, and astrocytes, with prominent activation of the immune response including interferon, NFkB signaling, and cell motility pathways, sharply contrasting with down-regulated expression of synaptic signaling and plasticity genes in VM non-dopaminergic neurons. VM transcriptomic reprogramming in the context of opioid exposure and overdose included 325 genes with genetic variation linked to substance use traits in the broader population, thereby pointing to heritable risk architectures in the genomic organization of the brain's reward circuitry.

4.
Neural Regen Res ; 17(4): 854-866, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34472486

ABSTRACT

Overexpression of neurotrophic factors in nigral dopamine neurons is a promising approach to reverse neurodegeneration of the nigrostriatal dopamine system, a hallmark in Parkinson's disease. The human cerebral dopamine neurotrophic factor (hCDNF) has recently emerged as a strong candidate for Parkinson's disease therapy. This study shows that hCDNF expression in dopamine neurons using the neurotensin-polyplex nanoparticle system reverses 6-hydroxydopamine-induced morphological, biochemical, and behavioral alterations. Three independent electron microscopy techniques showed that the neurotensin-polyplex nanoparticles containing the hCDNF gene, ranging in size from 20 to 150 nm, enabled the expression of a secretable hCDNF in vitro. Their injection in the substantia nigra compacta on day 21 after the 6-hydroxydopamine lesion resulted in detectable hCDNF in dopamine neurons, whose levels remained constant throughout the study in the substantia nigra compacta and striatum. Compared with the lesioned group, tyrosine hydroxylase-positive (TH+) nigral cell population and TH+ fiber density rose in the substantia nigra compacta and striatum after hCDNF transfection. An increase in ßIII-tubulin and growth-associated protein 43 phospho-S41 (GAP43p) followed TH+ cell recovery, as well as dopamine and its catabolite levels. Partial reversal (80%) of drug-activated circling behavior and full recovery of spontaneous motor and non-motor behavior were achieved. Brain-derived neurotrophic factor recovery in dopamine neurons that also occurred suggests its participation in the neurotrophic effects. These findings support the potential of nanoparticle-mediated hCDNF gene delivery to develop a disease-modifying treatment against Parkinson's disease. The Institutional Animal Care and Use Committee of Centro de Investigación y de Estudios Avanzados approved our experimental procedures for animal use (authorization No. 162-15) on June 9, 2019.

5.
Transl Psychiatry ; 11(1): 570, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34750356

ABSTRACT

Cocaine binds to the dopamine (DA) transporter (DAT) to regulate cocaine reward and seeking behavior. Zinc (Zn2+) also binds to the DAT, but the in vivo relevance of this interaction is unknown. We found that Zn2+ concentrations in postmortem brain (caudate) tissue from humans who died of cocaine overdose were significantly lower than in control subjects. Moreover, the level of striatal Zn2+ content in these subjects negatively correlated with plasma levels of benzoylecgonine, a cocaine metabolite indicative of recent use. In mice, repeated cocaine exposure increased synaptic Zn2+ concentrations in the caudate putamen (CPu) and nucleus accumbens (NAc). Cocaine-induced increases in Zn2+ were dependent on the Zn2+ transporter 3 (ZnT3), a neuronal Zn2+ transporter localized to synaptic vesicle membranes, as ZnT3 knockout (KO) mice were insensitive to cocaine-induced increases in striatal Zn2+. ZnT3 KO mice showed significantly lower electrically evoked DA release and greater DA clearance when exposed to cocaine compared to controls. ZnT3 KO mice also displayed significant reductions in cocaine locomotor sensitization, conditioned place preference (CPP), self-administration, and reinstatement compared to control mice and were insensitive to cocaine-induced increases in striatal DAT binding. Finally, dietary Zn2+ deficiency in mice resulted in decreased striatal Zn2+ content, cocaine locomotor sensitization, CPP, and striatal DAT binding. These results indicate that cocaine increases synaptic Zn2+ release and turnover/metabolism in the striatum, and that synaptically released Zn2+ potentiates the effects of cocaine on striatal DA neurotransmission and behavior and is required for cocaine-primed reinstatement. In sum, these findings reveal new insights into cocaine's pharmacological mechanism of action and suggest that Zn2+ may serve as an environmentally derived regulator of DA neurotransmission, cocaine pharmacodynamics, and vulnerability to cocaine use disorders.


Subject(s)
Cocaine , Dopamine , Animals , Corpus Striatum/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Mice , Nucleus Accumbens/metabolism , Synaptic Transmission , Zinc
6.
Drug Alcohol Depend ; 225: 108854, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34182374

ABSTRACT

BACKGROUND: A high proportion of opioid drug deaths involve concurrent benzodiazepine use. To reduce the risk of drug overdose, various prescription drug monitoring programs have been implemented. This study examined the impact of concurrent benzodiazepine use on opioid-related deaths, and the utility of the Michigan Automated Prescription System (MAPS) in predicting risk of opioid death. METHODS: Wayne County Medical Examiner's Office cases from 2018 were examined in terms of MAPS data and MAPS-derived drug risk scores, as well as postmortem toxicology. Opioid death cases with concurrent benzodiazepine use were compared to non-drug deaths. RESULTS: For cases with a MAPS history for 6 months preceding death, the incidence of opioid prescriptions filled did not differ between groups. In contrast, significantly more opioid death cases had filled a benzodiazepine prescription; alprazolam prescription was the single best predictor of opioid drug death. Groups differed in MAPS-calculated drug risk scores, though these were less predictive of opioid death than some individual measures of prescription drug use. In terms of postmortem toxicology, fentanyl was the best discriminator between cohorts, with significant associations seen for morphine, benzodiazepine, or cocaine use. Similar results were obtained in the subset of subjects filling a prescription within a month of death, except that MAPS risk scores no longer predicted drug deaths. CONCLUSION: MAPS scores did not adequately predict risk of opioid-related death. Contrary to expectations, prescription opioid use was not correlated with opioid-related death, whereas concurrent use of opioids and benzodiazepines represented a highly significant risk factor.


Subject(s)
Drug Overdose , Prescription Drug Monitoring Programs , Prescription Drugs , Analgesics, Opioid/adverse effects , Benzodiazepines/adverse effects , Drug Overdose/drug therapy , Drug Overdose/epidemiology , Drug Prescriptions , Humans , Prescription Drugs/adverse effects , Risk Factors
7.
Genome Med ; 12(1): 19, 2020 02 19.
Article in English | MEDLINE | ID: mdl-32075678

ABSTRACT

BACKGROUND: Midbrain dopaminergic neurons (MDN) represent 0.0005% of the brain's neuronal population and mediate cognition, food intake, and metabolism. MDN are also posited to underlay the neurobiological dysfunction of schizophrenia (SCZ), a severe neuropsychiatric disorder that is characterized by psychosis as well as multifactorial medical co-morbidities, including metabolic disease, contributing to markedly increased morbidity and mortality. Paradoxically, however, the genetic risk sequences of psychosis and traits associated with metabolic disease, such as body mass, show very limited overlap. METHODS: We investigated the genomic interaction of SCZ with medical conditions and traits, including body mass index (BMI), by exploring the MDN's "spatial genome," including chromosomal contact landscapes as a critical layer of cell type-specific epigenomic regulation. Low-input Hi-C protocols were applied to 5-10 × 103 dopaminergic and other cell-specific nuclei collected by fluorescence-activated nuclei sorting from the adult human midbrain. RESULTS: The Hi-C-reconstructed MDN spatial genome revealed 11 "Euclidean hot spots" of clustered chromatin domains harboring risk sequences for SCZ and elevated BMI. Inter- and intra-chromosomal contacts interconnecting SCZ and BMI risk sequences showed massive enrichment for brain-specific expression quantitative trait loci (eQTL), with gene ontologies, regulatory motifs and proteomic interactions related to adipogenesis and lipid regulation, dopaminergic neurogenesis and neuronal connectivity, and reward- and addiction-related pathways. CONCLUSIONS: We uncovered shared nuclear topographies of cognitive and metabolic risk variants. More broadly, our PsychENCODE sponsored Hi-C study offers a novel genomic approach for the study of psychiatric and medical co-morbidities constrained by limited overlap of their respective genetic risk architectures on the linear genome.


Subject(s)
Dopaminergic Neurons/metabolism , Polymorphism, Genetic , Quantitative Trait Loci , Schizophrenia/genetics , Adipogenesis , Animals , Body Mass Index , Chromosomes/genetics , Cognition , Humans , Lipid Metabolism , Mesencephalon/cytology , Mesencephalon/metabolism , Mice , Mice, Inbred C57BL , Neurogenesis , Schizophrenia/metabolism , Schizophrenia/pathology
8.
Sci Rep ; 9(1): 1534, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30733491

ABSTRACT

Opioid abuse is now the most common cause of accidental death in the US. Although opioids and most other drugs of abuse acutely increase signaling mediated by midbrain dopamine (DA)-synthesizing neurons, little is known about long-lasting changes in DA cells that may contribute to continued opioid abuse, craving, and relapse. A better understanding of the molecular and cellular bases of opioid abuse could lead to advancements in therapeutics. This study comprises, to our knowledge, the first unbiased examination of genome-wide changes in midbrain gene expression associated with human opioid abuse. Our analyses identified differentially expressed genes and distinct gene networks associated with opioid abuse, specific genes with predictive capability for subject assignment to the opioid abuse cohort, and genes most similarly affected in chronic opioid and cocaine abusers. We also identified differentially expressed long noncoding RNAs capable of regulating known drug-responsive protein-coding genes. Opioid-regulated genes identified in this study warrant further investigation as potential biomarkers and/or therapeutic targets for human substance abuse.


Subject(s)
Biomarkers/metabolism , Cocaine/pharmacology , Gene Regulatory Networks , Mesencephalon/metabolism , Opioid-Related Disorders/pathology , RNA, Long Noncoding/metabolism , Antigens, Differentiation/genetics , Antigens, Differentiation/metabolism , Area Under Curve , Case-Control Studies , Humans , Hydrogen-Ion Concentration , Mesencephalon/chemistry , Mesencephalon/drug effects , Middle Aged , NF-KappaB Inhibitor alpha/genetics , NF-KappaB Inhibitor alpha/metabolism , Opioid-Related Disorders/genetics , Opioid-Related Disorders/metabolism , ROC Curve
9.
Front Neurosci ; 12: 728, 2018.
Article in English | MEDLINE | ID: mdl-30405330

ABSTRACT

Opioid abuse is now the primary cause of accidental deaths in the United States. Studies over several decades established the cyclical nature of abused drugs of choice, with a current resurgence of heroin abuse and, more recently, fentanyl's emergence as a major precipitant of drug-related deaths. To better understand abuse trends and to explore the potential lethality of specific drug-drug interactions, we conducted statistical analyses of forensic toxicological data from the Wayne County Medical Examiner's Office from 2012-2016. We observed clear changes in opioid abuse over this period, including the rapid emergence of fentanyl and its analogs as highly significant causes of lethality starting in 2014. We then used Chi-square Automatic Interaction Detector (CHAID)-based decision tree analyses to obtain insights regarding specific drugs, drug combinations, and biomarkers in blood most predictive of cause of death or circumstances surrounding death. The presence of the non-opioid drug acetaminophen was highly predictive of drug-related deaths, likely reflecting the abuse of various combined acetaminophen-opioid formulations. The short-lived cocaine adulterant levamisole was highly predictive of a short post-cocaine survival time preceding sudden non-drug-related death. The combination of the opioid methadone and the antidepressant citalopram was uniformly linked to drug death, suggesting a potential drug-drug interaction at the level of a pathophysiological effect on the heart and/or drug metabolism. The presence of fentanyl plus the benzodiazepine midazolam was diagnostic for in-hospital deaths following serious medical illness and interventions that included these drugs. These data highlight the power of decision tree analyses not only in the determination of cause of death, but also as a key surveillance tool to inform drug abuse treatment and public health policies for combating the opioid crisis.

10.
Nanomedicine ; 13(4): 1363-1375, 2017 05.
Article in English | MEDLINE | ID: mdl-28219741

ABSTRACT

The human glial-cell derived neurotrophic factor (hGDNF) gene transfer by neurotensin (NTS)-polyplex nanoparticles functionally restores the dopamine nigrostriatal system in experimental Parkinson's disease models. However, high levels of sustained expression of GDNF eventually can cause harmful effects. Herein, we report an improved NTS-polyplex nanoparticle system that enables regulation of hGDNF expression within dopaminergic neurons. We constructed NTS-polyplex nanoparticles containing a single bifunctional plasmid that codes for the reverse tetracycline-controlled transactivator advanced (rtTA-Adv) under the control of NBRE3x promoter, and for hGDNF under the control of tetracycline-response element (TRE). Another bifunctional plasmid contained the enhanced green fluorescent protein (GFP) gene. Transient transfection experiments in N1E-115-Nurr1 cells showed that doxycycline (100 ng/mL) activates hGDNF and GFP expression. Doxycycline (5 mg/kg, i.p.) administration in rats activated hGDNF expression only in transfected dopaminergic neurons, whereas doxycycline withdrawal silenced transgene expression. Our results offer a specific doxycycline-regulated system suitable for nanomedicine-based treatment of Parkinson's disease.


Subject(s)
Dopaminergic Neurons/metabolism , Doxycycline/pharmacology , Gene Expression Regulation , Nanoparticles/chemistry , Neurotensin/chemistry , Nuclear Receptor Subfamily 6, Group A, Member 1/genetics , Animals , Cell Line, Tumor , Genetic Vectors , Humans , Male , Mice , Nuclear Receptor Subfamily 6, Group A, Member 1/metabolism , Parkinson Disease/drug therapy , Plasmids , Promoter Regions, Genetic , Rats , Rats, Wistar , Response Elements , Transfection , Transgenes
11.
J Neurochem ; 135(1): 50-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26222413

ABSTRACT

Maintenance of the drug-addicted state is thought to involve changes in gene expression in different neuronal cell types and neural circuits. Midbrain dopamine (DA) neurons in particular mediate numerous responses to drugs of abuse. Long noncoding RNAs (lncRNAs) regulate CNS gene expression through a variety of mechanisms, but next to nothing is known about their role in drug abuse. The proportion of lncRNAs that are primate-specific provides a strong rationale for their study in human drug abusers. In this study, we determined a profile of dysregulated putative lncRNAs through the analysis of postmortem human midbrain specimens from chronic cocaine abusers and well-matched control subjects (n = 11 in each group) using a custom lncRNA microarray. A dataset comprising 32 well-annotated lncRNAs with independent evidence of brain expression and robust differential expression in cocaine abusers is presented. For a subset of these lncRNAs, differential expression was validated by quantitative real-time PCR and cellular localization determined by in situ hybridization histochemistry. Examples of lncRNAs exhibiting DA cell-specific expression, different subcellular distributions, and covariance of expression with known cocaine-regulated protein-coding genes were identified. These findings implicate lncRNAs in the cellular responses of human DA neurons to chronic cocaine abuse. Long noncoding RNAs (lncRNAs) regulate the expression of protein-coding genes, but little is known about their potential role in drug abuse. In this study, we identified lncRNAs differentially expressed in human cocaine abusers' midbrains. One up-regulated antisense lncRNA, tumor necrosis factor receptor-associated factor 3-interacting protein 2-antisense 1 (TRAF3IP2-AS1), was found predominantly in the nucleus of human dopamine (DA) neurons, whereas the related TRAF3IP2 protein-coding transcript was distributed throughout these cells. The abundances of these transcripts were significantly correlated (left) suggesting that TRAF3IP2-AS1 may regulate TRAF3IP2 gene expression, perhaps through local chromatin changes at this locus (right).


Subject(s)
Cocaine-Related Disorders/genetics , Mesencephalon/metabolism , Neurons/metabolism , RNA, Long Noncoding/metabolism , RNA/metabolism , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/metabolism , Adaptor Proteins, Signal Transducing , Cocaine/pharmacology , Cocaine-Related Disorders/metabolism , Dopamine/genetics , Dopamine/metabolism , Humans , Neurons/drug effects , Transcription, Genetic
12.
J Biomed Sci ; 22: 59, 2015 Jul 22.
Article in English | MEDLINE | ID: mdl-26198255

ABSTRACT

BACKGROUND: The neurotrophin Brain-Derived Neurotrophic Factor (BDNF) influences nigral dopaminergic neurons via autocrine and paracrine mechanisms. The reduction of BDNF expression in Parkinson's disease substantia nigra (SN) might contribute to the death of dopaminergic neurons because inhibiting BDNF expression in the SN causes parkinsonism in the rat. This study aimed to demonstrate that increasing BDNF expression in dopaminergic neurons of rats with one week of 6-hydroxydopamine lesion recovers from parkinsonism. The plasmids phDAT-BDNF-flag and phDAT-EGFP, coding for enhanced green fluorescent protein, were transfected using neurotensin (NTS)-polyplex, which enables delivery of genes into the dopaminergic neurons via neurotensin-receptor type 1 (NTSR1) internalization. RESULTS: Two weeks after transfections, RT-PCR and immunofluorescence techniques showed that the residual dopaminergic neurons retain NTSR1 expression and susceptibility to be transfected by the NTS-polyplex. phDAT-BDNF-flag transfection did not increase dopaminergic neurons, but caused 7-fold increase in dopamine fibers within the SN and 5-fold increase in innervation and dopamine levels in the striatum. These neurotrophic effects were accompanied by a significant improvement in motor behavior. CONCLUSIONS: NTS-polyplex-mediated BDNF overexpression in dopaminergic neurons has proven to be effective to remit hemiparkinsonism in the rat. This BDNF gene therapy might be helpful in the early stage of Parkinson's disease.


Subject(s)
Brain-Derived Neurotrophic Factor/biosynthesis , Dopaminergic Neurons , Neurotensin , Parkinson Disease , Substantia Nigra , Transfection/methods , Animals , Brain-Derived Neurotrophic Factor/genetics , Disease Models, Animal , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Genetic Therapy/methods , Male , Neurotensin/chemistry , Neurotensin/pharmacology , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Parkinson Disease/therapy , Rats , Rats, Wistar , Receptors, Neurotensin/metabolism , Substantia Nigra/metabolism , Substantia Nigra/pathology
13.
PLoS One ; 10(2): e0117580, 2015.
Article in English | MEDLINE | ID: mdl-25658879

ABSTRACT

The development of new therapeutic strategies for the treatment of complex brain disorders such as drug addiction is likely to be advanced by a more complete understanding of the underlying molecular pathophysiology. Although the study of postmortem human brain represents a unique resource in this regard, it can be challenging to disentangle the relative contribution of chronic pathological processes versus perimortem events to the observed changes in gene expression. To begin to unravel this issue, we analyzed by quantitative PCR the midbrain expression of numerous candidate genes previously associated with cocaine abuse. Data obtained from chronic cocaine abusers (and matched control subjects) dying of gunshot wounds were compared with a prior study of subjects with deaths directly attributable to cocaine abuse. Most of the genes studied (i.e., tyrosine hydroxylase, dopamine transporter, forkhead box A2, histone variant H3 family 3B, nuclear factor kappa B inhibitor alpha, growth arrest and DNA damage-inducible beta) were found to be differentially expressed in chronic cocaine abusers irrespective of immediate cause of death or perimortem levels of cocaine, suggesting that these may represent core pathophysiological changes arising with chronic drug abuse. On the other hand, chemokine C-C motif ligand 2 and jun proto-oncogene expression were unaffected in cocaine-abusing subjects dying of gunshot wounds, in contrast to the differential expression previously reported in cocaine-related fatalities. The possible influence of cause of death and other factors on the cocaine-responsiveness of these genes is discussed.


Subject(s)
Cocaine-Related Disorders/genetics , Cocaine/poisoning , Gene Expression Profiling , Mesencephalon/drug effects , Adult , Antigens, Differentiation/genetics , Autopsy , Cause of Death , Cocaine-Related Disorders/etiology , Cocaine-Related Disorders/mortality , Dopamine Plasma Membrane Transport Proteins/genetics , Dopamine Uptake Inhibitors/poisoning , Dopaminergic Neurons/metabolism , Hepatocyte Nuclear Factor 3-beta/genetics , Humans , I-kappa B Proteins/genetics , Male , Mesencephalon/metabolism , Middle Aged , NF-KappaB Inhibitor alpha , Proto-Oncogene Mas , Reverse Transcriptase Polymerase Chain Reaction , Tyrosine 3-Monooxygenase/genetics , Wounds, Gunshot , Young Adult
14.
PLoS One ; 10(2): e0117391, 2015.
Article in English | MEDLINE | ID: mdl-25693197

ABSTRACT

The progressive degeneration of the dopamine neurons of the pars compacta of substantia nigra and the consequent loss of the dopamine innervation of the striatum leads to the impairment of motor behavior in Parkinson's disease. Accordingly, an efficient therapy of the disease should protect and regenerate the dopamine neurons of the substantia nigra and the dopamine innervation of the striatum. Nigral neurons express Brain Derived Neurotropic Factor (BDNF) and dopamine D3 receptors, both of which protect the dopamine neurons. The chronic activation of dopamine D3 receptors by their agonists, in addition, restores, in part, the dopamine innervation of the striatum. Here we explored whether the over-expression of BDNF by dopamine neurons potentiates the effect of the activation of D3 receptors restoring nigrostriatal innervation. Twelve-month old Wistar rats were unilaterally injected with 6-hydroxydopamine into the striatum. Five months later, rats were treated with the D3 agonist 7-hydroxy-N,N-di-n-propy1-2-aminotetralin (7-OH-DPAT) administered i.p. during 4½ months via osmotic pumps and the BDNF gene transfection into nigral cells using the neurotensin-polyplex nanovector (a non-viral transfection) that selectively transfect the dopamine neurons via the high-affinity neurotensin receptor expressed by these neurons. Two months after the withdrawal of 7-OH-DPAT when rats were aged (24 months old), immunohistochemistry assays were made. The over-expression of BDNF in rats receiving the D3 agonist normalized gait and motor coordination; in addition, it eliminated the muscle rigidity produced by the loss of dopamine. The recovery of motor behavior was associated with the recovery of the nigral neurons, the dopamine innervation of the striatum and of the number of dendritic spines of the striatal neurons. Thus, the over-expression of BDNF in dopamine neurons associated with the chronic activation of the D3 receptors appears to be a promising strategy for restoring dopamine neurons in Parkinson's disease.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Dendritic Spines/physiology , Dopamine Agonists/pharmacology , Dopaminergic Neurons/pathology , Neostriatum/physiopathology , Parkinson Disease/physiopathology , Receptors, Dopamine D3/metabolism , Animals , Biomechanical Phenomena/drug effects , Biomechanical Phenomena/genetics , Dendritic Spines/drug effects , Disease Models, Animal , Dopaminergic Neurons/drug effects , Gait/drug effects , Gait/genetics , Male , Motor Activity/drug effects , Motor Activity/genetics , Muscles/drug effects , Muscles/physiopathology , Neostriatum/drug effects , Parkinson Disease/genetics , Parkinson Disease/pathology , Psychomotor Performance/drug effects , Rats , Rats, Wistar , Recovery of Function/drug effects , Recovery of Function/genetics , Regeneration/drug effects , Regeneration/genetics , Transfection , Tyrosine 3-Monooxygenase/metabolism
15.
Neuropsychopharmacology ; 39(9): 2191-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24642598

ABSTRACT

Chronic drug abuse, craving, and relapse are thought to be linked to long-lasting changes in neural gene expression arising through transcriptional and chromatin-related mechanisms. The key contributions of midbrain dopamine (DA)-synthesizing neurons throughout the addiction process provide a compelling rationale for determining the drug-induced molecular changes that occur in these cells. Yet our understanding of these processes remains rudimentary. The postmortem human brain constitutes a unique resource that can be exploited to gain insights into the pathophysiology of complex disorders such as drug addiction. In this study, we analyzed the profiles of midbrain gene expression in chronic cocaine abusers and well-matched drug-free control subjects using microarray and quantitative PCR. A small number of genes exhibited robust differential expression; many of these are involved in the regulation of transcription, chromatin, or DA cell phenotype. Transcript abundances for approximately half of these differentially expressed genes were diagnostic for assigning subjects to the cocaine-abusing vs control cohort. Identification of a molecular signature associated with pathophysiological changes occurring in cocaine abusers' midbrains should contribute to the development of biomarkers and novel therapeutic targets for drug addiction.


Subject(s)
Brain/metabolism , Cocaine-Related Disorders/genetics , Cocaine-Related Disorders/metabolism , Dopaminergic Neurons/metabolism , Mesencephalon/metabolism , Chromatin/metabolism , Chronic Disease , Dopamine/metabolism , Gene Expression Regulation , Humans , Immunohistochemistry , Male , Microarray Analysis , Middle Aged , Polymerase Chain Reaction , Transcription, Genetic
16.
Addict Biol ; 19(1): 122-31, 2014 Jan.
Article in English | MEDLINE | ID: mdl-22026501

ABSTRACT

Altered activity of the human dopamine transporter gene (hDAT) is associated with several common and severe brain disorders, including cocaine abuse. However, there is little a priori information on whether such alterations are due to nature (genetic variation) or nurture (human behaviors such as cocaine abuse). This study investigated the correlation between seven markers throughout hDAT and its mRNA levels in postmortem ventral midbrain tissues from 18 cocaine abusers and 18 strictly matched drug-free controls in the African-American population. Here, we show that one major haplotype with the same frequency in cocaine abusers versus drug-free controls displays a 37.1% reduction of expression levels in cocaine abusers compared with matched controls (P=0.0057). The most studied genetic marker, variable number tandem repeats (VNTR) located in Exon 15 (3'VNTR), is not correlated with hDAT mRNA levels. A 5' upstream VNTR (rs70957367) has repeat numbers that are positively correlated with expression levels in controls (r(2)=0.9536, P=0.0235), but this positive correlation disappears in cocaine abusers. The findings suggest that varying hDAT activity is attributable to both genetics and cocaine abuse.


Subject(s)
Cocaine-Related Disorders/genetics , Dopamine Plasma Membrane Transport Proteins/genetics , Gene Expression Regulation/genetics , Genetic Variation/genetics , RNA, Messenger/metabolism , Ventral Tegmental Area/metabolism , Adult , Black or African American/genetics , Aged , Alleles , Analysis of Variance , Case-Control Studies , Cocaine-Related Disorders/metabolism , Dopamine Plasma Membrane Transport Proteins/drug effects , Dopamine Plasma Membrane Transport Proteins/metabolism , Epigenesis, Genetic , Exons , Female , Gene Expression/genetics , Genetic Markers/genetics , Genetic Predisposition to Disease , Haplotypes , Humans , Linkage Disequilibrium/genetics , Male , Middle Aged , Minisatellite Repeats/genetics , Polymerase Chain Reaction/methods , Polymorphism, Restriction Fragment Length/genetics
18.
J Forensic Sci ; 57(6): 1519-23, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22803793

ABSTRACT

Cocaine-related fatalities can pose forensic challenges, particularly when accompanied by excited delirium (ED) syndrome and interventions by law enforcement and medical personnel. A recent report concluded that elevated heat shock protein 70 (HSP70) expression in autopsy brain samples constitutes a reliable forensic biomarker for the identification of ED as a cause of death. The present study quantified the abundance of both HSPA1A and HSPA1B gene (HSP70-encoding) transcripts in midbrain specimens from a series of cocaine-related fatalities and matched drug-free control subjects. HSP70 expression was increased significantly in cocaine abusers as a group compared to control subjects, irrespective of the presence or absence of ED. Furthermore, elevated HSP70 expression was predictive of a period of survival between cocaine use and death that included medical and/or police intervention. The present data do not support the assertion that HSP70 expression is a reliable brain biomarker for identifying ED as a cause of death.


Subject(s)
Brain/metabolism , Cocaine-Related Disorders/metabolism , HSP70 Heat-Shock Proteins/genetics , RNA, Messenger/metabolism , Adult , Analysis of Variance , Brain/pathology , Case-Control Studies , Female , Forensic Pathology , Forensic Toxicology , Gene Expression , HSP70 Heat-Shock Proteins/metabolism , Humans , Male , Microarray Analysis , Middle Aged , Real-Time Polymerase Chain Reaction , Young Adult
19.
Nanomedicine ; 8(7): 1052-69, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22406187

ABSTRACT

Nanomedicine has focused on targeted neurotrophic gene delivery to the brain as a strategy to stop and reverse neurodegeneration in Parkinson's disease. Because of improved transfection ability, synthetic nanocarriers have become candidates for neurotrophic therapy. Neurotensin (NTS)-polyplex is a "Trojan horse" synthetic nanocarrier system that enters dopaminergic neurons through NTS receptor internalization to deliver a genetic cargo. The success of preclinical studies with different neurotrophic genes supports the possibility of using NTS-polyplex in nanomedicine. In this review, we describe the mechanism of NTS-polyplex transfection. We discuss the concept that an effective neurotrophic therapy requires a simultaneous effect on the axon terminals and soma of the remaining dopaminergic neurons. We also discuss the future of this strategy for the treatment of Parkinson's disease. FROM THE CLINICAL EDITOR: This review paper focuses on nanomedicine-based treatment of Parkinson's disease, a neurodegenerative condition with existing symptomatic but no curative treatment. Neurotensin-polyplex is a synthetic nanocarrier system that enables delivery of genetic cargo to dopaminergic neurons via NTS receptor internalization.


Subject(s)
DNA/administration & dosage , Gene Transfer Techniques , Genetic Therapy/methods , Nanostructures/chemistry , Neurotensin/chemistry , Parkinson Disease/genetics , Amino Acid Sequence , Animals , Humans , Molecular Sequence Data , Neurotensin/metabolism , Parkinson Disease/therapy
20.
Front Neurosci ; 5: 135, 2011.
Article in English | MEDLINE | ID: mdl-22194714

ABSTRACT

The transcription factor NURR1 plays a pivotal role in the development and maintenance of neurotransmitter phenotype in midbrain dopamine neurons. Conversely, decreased NURR1 expression is associated with a number of dopamine-related CNS disorders, including Parkinson's disease and drug addiction. In order to better understand the nature of NURR1-responsive genes and their potential roles in dopamine neuron differentiation and survival, we used a human neural cellular background (SK-N-AS cells) in which to generate a number of stable clonal lines with graded NURR1 gene expression that approximated that seen in DA cell-rich human substantia nigra. Gene expression profiling data from these NURR1-expressing clonal lines were validated by quantitative RT-PCR and subjected to bioinformatic analyses. The present study identified a large number of NURR1-responsive genes and demonstrated the potential importance of concentration-dependent NURR1 effects in the differential regulation of distinct NURR1 target genes and biological pathways. These data support the promise of NURR1-based CNS therapeutics for the neuroprotection and/or functional restoration of DA neurons.

SELECTION OF CITATIONS
SEARCH DETAIL
...